3.931 \(\int x^2 \sqrt {a+b x^2+c x^4} \, dx\)

Optimal. Leaf size=342 \[ -\frac {2 x \left (b^2-3 a c\right ) \sqrt {a+b x^2+c x^4}}{15 c^{3/2} \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {\sqrt [4]{a} \left (\sqrt {a} b \sqrt {c}-6 a c+2 b^2\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{30 c^{7/4} \sqrt {a+b x^2+c x^4}}+\frac {2 \sqrt [4]{a} \left (b^2-3 a c\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{15 c^{7/4} \sqrt {a+b x^2+c x^4}}+\frac {x \left (b+3 c x^2\right ) \sqrt {a+b x^2+c x^4}}{15 c} \]

[Out]

1/15*x*(3*c*x^2+b)*(c*x^4+b*x^2+a)^(1/2)/c-2/15*(-3*a*c+b^2)*x*(c*x^4+b*x^2+a)^(1/2)/c^(3/2)/(a^(1/2)+x^2*c^(1
/2))+2/15*a^(1/4)*(-3*a*c+b^2)*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*Ell
ipticE(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+b*x^2+a
)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/c^(7/4)/(c*x^4+b*x^2+a)^(1/2)-1/30*a^(1/4)*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^
2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))
^(1/2))*(a^(1/2)+x^2*c^(1/2))*(2*b^2-6*a*c+b*a^(1/2)*c^(1/2))*((c*x^4+b*x^2+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/
c^(7/4)/(c*x^4+b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 342, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1116, 1197, 1103, 1195} \[ -\frac {2 x \left (b^2-3 a c\right ) \sqrt {a+b x^2+c x^4}}{15 c^{3/2} \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {\sqrt [4]{a} \left (\sqrt {a} b \sqrt {c}-6 a c+2 b^2\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{30 c^{7/4} \sqrt {a+b x^2+c x^4}}+\frac {2 \sqrt [4]{a} \left (b^2-3 a c\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{15 c^{7/4} \sqrt {a+b x^2+c x^4}}+\frac {x \left (b+3 c x^2\right ) \sqrt {a+b x^2+c x^4}}{15 c} \]

Antiderivative was successfully verified.

[In]

Int[x^2*Sqrt[a + b*x^2 + c*x^4],x]

[Out]

(-2*(b^2 - 3*a*c)*x*Sqrt[a + b*x^2 + c*x^4])/(15*c^(3/2)*(Sqrt[a] + Sqrt[c]*x^2)) + (x*(b + 3*c*x^2)*Sqrt[a +
b*x^2 + c*x^4])/(15*c) + (2*a^(1/4)*(b^2 - 3*a*c)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] +
Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(15*c^(7/4)*Sqrt[a + b*
x^2 + c*x^4]) - (a^(1/4)*(2*b^2 + Sqrt[a]*b*Sqrt[c] - 6*a*c)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/
(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(30*c^(7/4)*
Sqrt[a + b*x^2 + c*x^4])

Rule 1103

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(2*q*Sqrt[a + b*x^2 + c
*x^4]), x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1116

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*(d*x)^(m - 1)*(a + b*x^
2 + c*x^4)^p*(2*b*p + c*(m + 4*p - 1)*x^2))/(c*(m + 4*p + 1)*(m + 4*p - 1)), x] - Dist[(2*p*d^2)/(c*(m + 4*p +
 1)*(m + 4*p - 1)), Int[(d*x)^(m - 2)*(a + b*x^2 + c*x^4)^(p - 1)*Simp[a*b*(m - 1) - (2*a*c*(m + 4*p - 1) - b^
2*(m + 2*p - 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && GtQ[m, 1] &&
 IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1195

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[
(d*x*Sqrt[a + b*x^2 + c*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q
^2*x^2)^2)]*EllipticE[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(q*Sqrt[a + b*x^2 + c*x^4]), x] /; EqQ[e + d*q^2, 0
]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1197

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rubi steps

\begin {align*} \int x^2 \sqrt {a+b x^2+c x^4} \, dx &=\frac {x \left (b+3 c x^2\right ) \sqrt {a+b x^2+c x^4}}{15 c}-\frac {\int \frac {a b+2 \left (b^2-3 a c\right ) x^2}{\sqrt {a+b x^2+c x^4}} \, dx}{15 c}\\ &=\frac {x \left (b+3 c x^2\right ) \sqrt {a+b x^2+c x^4}}{15 c}+\frac {\left (2 \sqrt {a} \left (b^2-3 a c\right )\right ) \int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a+b x^2+c x^4}} \, dx}{15 c^{3/2}}-\frac {\left (\sqrt {a} \left (\sqrt {a} b+\frac {2 \left (b^2-3 a c\right )}{\sqrt {c}}\right )\right ) \int \frac {1}{\sqrt {a+b x^2+c x^4}} \, dx}{15 c}\\ &=-\frac {2 \left (b^2-3 a c\right ) x \sqrt {a+b x^2+c x^4}}{15 c^{3/2} \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {x \left (b+3 c x^2\right ) \sqrt {a+b x^2+c x^4}}{15 c}+\frac {2 \sqrt [4]{a} \left (b^2-3 a c\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{15 c^{7/4} \sqrt {a+b x^2+c x^4}}-\frac {\sqrt [4]{a} \left (\sqrt {a} b+\frac {2 \left (b^2-3 a c\right )}{\sqrt {c}}\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{30 c^{5/4} \sqrt {a+b x^2+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.25, size = 479, normalized size = 1.40 \[ \frac {-i \left (b^2-3 a c\right ) \left (\sqrt {b^2-4 a c}-b\right ) \sqrt {\frac {\sqrt {b^2-4 a c}+b+2 c x^2}{\sqrt {b^2-4 a c}+b}} \sqrt {\frac {-2 \sqrt {b^2-4 a c}+2 b+4 c x^2}{b-\sqrt {b^2-4 a c}}} E\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )+2 c x \sqrt {\frac {c}{\sqrt {b^2-4 a c}+b}} \left (b+3 c x^2\right ) \left (a+b x^2+c x^4\right )+i \left (b^2 \sqrt {b^2-4 a c}-3 a c \sqrt {b^2-4 a c}+4 a b c-b^3\right ) \sqrt {\frac {\sqrt {b^2-4 a c}+b+2 c x^2}{\sqrt {b^2-4 a c}+b}} \sqrt {\frac {-2 \sqrt {b^2-4 a c}+2 b+4 c x^2}{b-\sqrt {b^2-4 a c}}} F\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )}{30 c^2 \sqrt {\frac {c}{\sqrt {b^2-4 a c}+b}} \sqrt {a+b x^2+c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2*Sqrt[a + b*x^2 + c*x^4],x]

[Out]

(2*c*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x*(b + 3*c*x^2)*(a + b*x^2 + c*x^4) - I*(b^2 - 3*a*c)*(-b + Sqrt[b^2 - 4*
a*c])*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^
2)/(b - Sqrt[b^2 - 4*a*c])]*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*
a*c])/(b - Sqrt[b^2 - 4*a*c])] + I*(-b^3 + 4*a*b*c + b^2*Sqrt[b^2 - 4*a*c] - 3*a*c*Sqrt[b^2 - 4*a*c])*Sqrt[(b
+ Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b
^2 - 4*a*c])]*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqr
t[b^2 - 4*a*c])])/(30*c^2*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[a + b*x^2 + c*x^4])

________________________________________________________________________________________

fricas [F]  time = 0.54, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {c x^{4} + b x^{2} + a} x^{2}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2 + a)*x^2, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {c x^{4} + b x^{2} + a} x^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^4 + b*x^2 + a)*x^2, x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 417, normalized size = 1.22 \[ \frac {\sqrt {c \,x^{4}+b \,x^{2}+a}\, x^{3}}{5}-\frac {\sqrt {2}\, \sqrt {-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}+4}\, \sqrt {\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}+4}\, a b \EllipticF \left (\frac {\sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, x}{2}, \frac {\sqrt {\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) b}{a c}-4}}{2}\right )}{60 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, c}-\frac {\left (\frac {2 a}{5}-\frac {2 b^{2}}{15 c}\right ) \sqrt {2}\, \sqrt {-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}+4}\, \sqrt {\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}+4}\, \left (-\EllipticE \left (\frac {\sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, x}{2}, \frac {\sqrt {\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) b}{a c}-4}}{2}\right )+\EllipticF \left (\frac {\sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, x}{2}, \frac {\sqrt {\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) b}{a c}-4}}{2}\right )\right ) a}{2 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}+\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}\, b x}{15 c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(c*x^4+b*x^2+a)^(1/2),x)

[Out]

1/5*x^3*(c*x^4+b*x^2+a)^(1/2)+1/15*b/c*x*(c*x^4+b*x^2+a)^(1/2)-1/60*a*b/c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^
(1/2)*(-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2+4)^(1/2)*(2*(b+(-4*a*c+b^2)^(1/2))/a*x^2+4)^(1/2)/(c*x^4+b*x^2+a)^(1/2
)*EllipticF(1/2*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*x,1/2*(2*(b+(-4*a*c+b^2)^(1/2))/a*b/c-4)^(1/2))-1/2*
(2/5*a-2/15*b^2/c)*a*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2+4)^(1/2)*(2*(
b+(-4*a*c+b^2)^(1/2))/a*x^2+4)^(1/2)/(c*x^4+b*x^2+a)^(1/2)/(b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*2^(1/2)*((-b+
(-4*a*c+b^2)^(1/2))/a)^(1/2)*x,1/2*(2*(b+(-4*a*c+b^2)^(1/2))/a*b/c-4)^(1/2))-EllipticE(1/2*2^(1/2)*((-b+(-4*a*
c+b^2)^(1/2))/a)^(1/2)*x,1/2*(2*(b+(-4*a*c+b^2)^(1/2))/a*b/c-4)^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {c x^{4} + b x^{2} + a} x^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^4 + b*x^2 + a)*x^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int x^2\,\sqrt {c\,x^4+b\,x^2+a} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a + b*x^2 + c*x^4)^(1/2),x)

[Out]

int(x^2*(a + b*x^2 + c*x^4)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x^{2} \sqrt {a + b x^{2} + c x^{4}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral(x**2*sqrt(a + b*x**2 + c*x**4), x)

________________________________________________________________________________________